
Journal of Statistical Physics, Vol. 37, Nos. 5/6, 1984 

Optimal Gaussian Solutions of Nonlinear Stochastic 
Partial Differential Equations 

H. M.  Ito  I 

Received February 8, 1984," revision received May 3, 1984 

We present a linearization procedure of a stochastic partial differential equation 
for a vector field (Xi(t,x)) ( tC[0,  oo), x C R  a, i = 1  ..... n): ~tXi(t ,x)= 
bi(X(t, x)) + D i AXi(t, x) + oifi(t, x). Here A is the Laplace-Beltrami operator 
in R a, and (fi(t,x)) is a Gaussian random field with ( f i ( t , x )J ) ( t ' , x ' ) )= 
6 i j a ( t - t '  ) 6 ( x - x ' ) .  The procedure is a natural extension of the equivalent 
linearization for stochastic ordinary differential equations. The linearized 
solution is optimal in the sense that the distance between true and approximate 
solutions is minimal when it is measured by the Kullback-Leibler entropy. The 
procedure is applied to the scalar-valued Ginzburg-Landau model in R 1 with 
b~(z) = t~z -  vz 3. Stationary values of mean, variance, and correlation length are 
calculated. They almost agree with exact ones if/1~< 1.24 (v~a~/D1) 1/3 :=r 
When ~ >//zc, there appear quasistationary states fluctuating around one of the 
bottoms of the potential U(z)=fb l ( z )dz .  The second moment at the 
quasistationary states almost agrees with the exact one. Transient phenomena 
are also discussed. Half-width at half-maximum of a structure function decays 
like t-i/2 for small t. The diffusion term C~x2X accelerates the relaxation from the 
neighborhood of an unstable initial state X(0, x) -~ 0. 

KEY WORDS: Equivalent linearization; nonlinear stochastic partial differential 
equation; Kullback-Leibler entropy; Ginzburg-Landau model; relaxation from 
unstable state. 

1. I N T R O D U C T I O N  

The  equ iva len t  l inea r i za t ion  ~1'2) (EL) ,  wh ich  s o m e  au tho r s  r ecen t ly  call  

p iecewise  op t ima l  l inea r i za t ion  ~3) or a p p r o x i m a t e  G a u s s i a n  r e p r e s e n t a t i o n  o f  
evo lu t ion  �9 ~4~ equa t ion ,  seeks a p p r o x i m a t e  G a u s s i a n  so lu t ions  o f  non l inea r  
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diffusion processes. Suppose that we are given a stochastic ordinary 
differential equation for a scalar X = (X(t))  with a constant diffusion ~: 

dX(t ) /d t  = b(X(t)  ) + 6f( t)  (1.1) 

where f ( t )  is a Gaussian white noise with ( f ( t ) ) = 0  and ( f ( t ) f ( t ' ) ) =  
6 ( t - t ' ) .  Here the symbol ( . )  indicates the ensemble average. An approx- 
imate Gaussian solution Y =  (Y(t))  satisfying 

dY( t ) /d t  = a(t) + fl(t)[ Y(t) - m(t)] + af( t )  (1.2) 

is obtained in a self-consistent way by making a(t), fl(t) minimize 

( {b( Y(t) ) - a(t) - fl(t)[ Y(t) - m(t)] }z) (1.3) 

Theoretical aspects of the EL have been studied; Nakazawa ~z) showed 
that the EL is the first order approximation of the Wiener-Hermite 
expansion of the original process X. Murakami (5) and Ito (6) proved that 
among all Gaussian processes Y satisfying (1.2), the one minimizing (1.3) is 
the closest to the original process X when the distance between X and Y is 
measured by the Kullback-Leibler entropy. Numerical calculation by 
Valsakumar et al. (3) and West et al. (4) showed that the EL is satisfactory 
from a practical point of view. 

This paper aims at presenting a counterpart of the EL for a stochastic 
partial differential equation (SPDE) for a vector field X = (Xi(t, x))  of the 
form 

c3tXi(t, x)  = bi(X(t, x))  + DiAXi(t ,  x)  + aifi(t, x), i = 1, 2,..., n, x E R d 
(1.4) 

Here b(z) = (bi(z)) is a vector function, A is the Laplace-Beltrami operator 
in Rd, f ( t , x ) =  ( f i ( t , x ) )  is a Gaussian white random field with 

x ) )  = 0, 
(1.5) 

( Z ( t ,  x ) f j ( c ,  x ' ) )  = - r )  - x , )  

and D i > 0, cr i 4:0 are constants. 
Equation (1.4) describes spatially extended systems under the effects of 

diffusion and random forces which are represented by the second and the 
third terms on the right hand side of (1.4). Applications of (1.4) are found in 
Ref. 15 to hydrodynamics, nonlinear optics, chemical reaction models, and 
other related problems. 

In Section 2 the EL formula is derived for (1.4) with d = n = 1, and the 
assertion by Murakami and Ito is shown to be valid. General case (1.4) is 
discussed in Section 3. 
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Section 4 is devoted to application of the EL to the scalar-valued 
Ginzburg-Landau model in R ~, i.e., (1.4) with n = d =  1, bl(z ) = p z -  vz 3. 
In Section4.1, SPDE (1.4) is scaled such that v = D ~ - a ~ =  1, and basic 
equations for mean and variance and derived. In Section 4.2, stationary 
solution is discussed. We find the following: 

(1) Spatial correlation function V(x) takes a correct form 
exp(--const Ix[) (const >0); EL improves a defect of the approximation by 
Langer (7) and Tomita and Murakami. (8'9) 

(2) There exists a critical value Pc ~- 1.24 such that we have a unique 
stationary solution if p < Pc and five stationary solutions if p > Pc ; one is a 
true stationary state, two of them represent quasistationary states fluctuating 
around • bottoms of the potential U(z)= f~o b~(z)dz, and the other two 
are spurious because they are locally unstable. 

(3) When p <pc ,  variance and correlation length almost agree with 
exact ones obtained numerically by Scalapino et al. (~~ 

(4) Even when p > Pc, the quasistationary states give almost correct 
second order moment. 

The time-dependent problem is treated in Section 4.3. Relaxation from an 
unstable initial state X(0, x ) ~  0 is studied numerically; the diffusion term 
c~X accelerates the relaxation considerably. The t -  1/2 behavior of half-width 
at half-maximum of a structure function (9) for small time t is confirmed also 
in the EL. 

The EL of the present paper approximates the original field X by a 
Gaussian field with spatial uniformity in the sense of ensemble average. In 
Section 5, a discussion is given on this point and a possible improvement is 
suggested. 

Stability of multiple stationary states is discussed in the Appendix. 

2. EQUIVALENT LINEARIZATION OF STOCHASTIC PARTIAL 
DIFFERENTIAL EQUATIONS 

Consider a scalar stochastic field X =  (X(t,x)) determined by a 
stochastic partial differential equation (SPDE) (1.4) with n - - d - -  1: 

atX(t, x) -~ b(X(t, x)) + D ? ~ ( t ,  x) + af(t, x), x C R '  (2.1) 

Here b(z) is a scalar function, and D > 0, a # 0 are constants. Gaussian 
random field f ( t , x )  satisfies (1.5) with n = d =  1. Equation (2.1) is to be 
understood as 

dX(t, x) = b(X(t, x)) dt + D ~2X(t, x) dt + a dW(t, x) (2.2) 
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Here W(t, x) is the so-called cylindrical Brownian motion which formally 
satisfies f ( t , x ) = c ~ t W ( t , x  ). See Funaki ~1" for further mathematical 
discussion. 

We suppose that the system determined by SPDE (2.1) is spatially 
uniform in the sense of ensemble average. Let us find an approximate 
Gaussian field Y = (Y(t, x)) given by 

~t Y(t, x) --- {a(t) + fl(t)[ Y(t, x) - m(t)]} 

+ D c3 2 r(t, x) + erf(t, x) (2.3) 
with 

m(t) = (Y(t, x)) (2.4) 

Nonrandom functions a(t), fl(t) are obtained by minimizing 

I(t) := ( {b( Y(t, x) ) - a(t) - fl(t) ~(t, x)} 2) (2.5) 

where 
~(t, x) := Y(t, x) - re(t) (2.6) 

I(t) attains its minimum when 

a(t) = (b(Y(t, x))) := a(t) (2.7) 

fl(t) = (b(Y(t, x)) ~(t, x))/(~(t, x) 2) := fl(t) (2.8) 

since 
~2 - 2 ~ 2 2 I, = (a t -- cTt) 2 + ( t,x)(flt - fit) -- (b( Yt,x) t,x) I ( ~t,x) 

+ (b(Vt,x) 2) -- (b(Yt,x)) 2 

scheme consists of solving (2.3), (2.4), (2,7), and The EL 
consistently. 

Let us derive a closed set of equations for nonrandom quantities. By 
taking the average of both sides of (2.3) we have 

rh(t) = a(t) (2.9) 

satisfies an SPDE 

~t~(t, x) =fl(t)  ~(t, x) q- D ~32 ~(t, x) + off(t, x) (2.10) 

It is solved by using the Fourier transformation as 

~(t, x) = (27r) -1 H(t) f ak e-ikXe-~ f ay eikY~(O, y) 

+ o(2~) -1H(t)  f dke- ikx  ~o ( '  ds H(s ) - '  eVk2(s- ' f(s,k) 

(2.8) self- 

(2.11) 
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Here 

H(t) = exp s) ds (2.12) 

and f is the Fourier transform o f f :  

f( t ,  k) = S dx eik~f(t, x) (2.13) 

satisfying 

( / ( t ,  k)> = 0 

( f ( t ,  k)f(t', k')}  = 2~ra(t - t') 6(k + k') 
(2.14) 

Define spatial correlation function V as 

v ( t ,  x - x ' )  := (r x) ~(t, x ' ) )  (2.15) 

which depends only on x -  x '  by spatial uniformity assumption. Substituting 
(2.11) into (2.15) and using (2.14), we have 

V(t, x) = (27r) -1 H(t) 2 1 dk e-'kXe-2Dk2'~ dy eikrV(O, y) 

+ a2(2~)-l H(t) 2 dk e -i~x ds H(s)-Z e 2~ (2.16) 

o r  

8tV(t,x)=2fl(t) V(t ,x)+ 2DO2xV(t,x)+a~6(x) (2.17) 

Here we have assumed that the initial value ~(0, x) is spatially uniform, 
i.e., (~(0, x)~(0, x ' ) )  depends only on x - x ' ;  and that ~(0, x) has no 
correlation with f ( t ,  x) i.e., (f(t, x) ~(0, x ' ) )  -= 0. We note that a and fl given 
by (2.7), (2.8) are expressed by V(t, 0) since ~ is a Gaussian with mean zero; 
therefore (2.9), (2.17) with (2.7), (2.8) form a closed set of equations for 
m(t), V(t,x). In Section4, we carry out a further analysis for 
Ginzburg-Landau model given by b(z)=luz-  vz 3. 

Let us see how the EL is optimal in the sense of entropy. Consider 
SPDE (2.1) or (2.2) on a finite space interval (--L,L). For each t, X(t, .) 
takes values in E, the space of continuous functions defined on (--L,L). 
Hence the SPDE (2.1) determines a probability measure px in c~, the space 
of E-valued continuous functions defined on [0, m), through a relation: for 
any Borel subset A of go, p x ( A ) = p ( c o C l 2 ; X ( . , . , w ) ~ A ) .  Here by 

822/37/5-6-11 
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(t2,J- ,  P) we denote the basic probability space on which the SPDE (2.1) is 
defined. Let p r  denote a probability measure induced by Y given by (2.3). 
Let us consider the Kullback-Leibler entropy defined by 

SL(X, Y) = -- f~edpV(y) log dpX/dPr(y) (2.18) 

where dpx/dp v is the Radon-Nikodym derivative. As known, (lz) 
SL(x, Y)>/O, and =0 if and only if px = pr. S t can be used as a quantity 
representing the difference between true process X and approximate one Y. 
To calculate S t, we first divide spatial interval ( -L ,  L) into 2N segments, 
and consider (2N + 1)-dimensional stochastic ordinary differential equations 
for X N = (X(t, kL/N)) (k = -N,..., N): 

dXN(t, kL/N) = b(XN(t, kL/N) ) dt + D ANXN(t, kL/N) dt 

+ (N/L) '/2 a dW(t, k) (2.19) 

Here 

ANXN(t, kL/N) = N2L-  2[XN(t, (k + 1)L/N) -- 2XN(t, kL/N) 

+ Xu(t, (k - 1)L/W)] (2.20) 

and W(., k) (k =-N, . . . ,  N) is a (2N + 1)-dimensional Wiener process. We 
associate subscript N to represent quantities corresponding to the processes 
X u and Yu; PXN(A):= P(c~ C A), etc. The Radon-Nikodym derivative 

X Y dPu/dP u is given by the Girsanov formula~ 

Here 

dP~v/dPu(y ) = exp (L/N) 1/2 ~" 
k = - - N  

O(t, kL/N) dW(t, k) 

, N ] 
- �89 fl (L/N) ~ O2(t, kL/N) dt (2.21) 

k= --N Y = y  

r kL/N) = a l{b(Y(t, kL/N)) - a(t) 

- fl(t)[Y(t, kL/N) -- m(t)l } (2.22) 

As shown by Funaki, (11) p x ~ p x  and P~v-~P Y as N ~  ~ .  Therefore 

SL(x, Y) lira L 7L1 ( = Sx(X, Y)= lira N-l(r kL/U)}d t  
N--+c~ N ~  ~0 k=  --N 

t L 

0 - -L  

(2.23) 
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When L is large, the Kullback-Leibler entropy per unit length 
limL~oo SL(X, Y)/(2L) becomes 

fl/ { (r x)) dt dx (2.24) 
- - 0 0  

Since we have assumed the spatial uniformity, we observe that minimization 
of (2.24) is equivalent to that of I(t) defined by (2.5). 

We finally remark that as far as we assume the spatial uniformity, we 
do not have to take into account a term c3x[Y(t, x) - m(t)] in (2.3). In other 
words, if X is approximated by a Gaussian field Y following 

at r ( t ,  x) = {a(t) + ~( t ) [ r ( t ,  x )  - m(t)]} 

+ y(t) ~ Y(t, x) + D ~32 Y(t, x) + af(t, x) (2.25) 

then optimal choice is y -- 0. In fact, a, fl, IY which minimize I(t) defined by 

l ( t )  := ( [b( r ( t ,  x )  ) - a( t )  - fl(t) ~(t, x)  - y(t) t~x~(t, x)] 2) 

involve a term of the form (~(t, x) 3~( t ,  x)) = 3~ V(t, 0). Here ~ and V are 
defined by (2.6) and (2.15), respectively. V(t, x) follows a parabolic equation 
like (2.17), which forces ~ V(t, 0) to depend on sign x, a term violating 
spatial uniformity assumption. 

3. EL IN GENERAL CASE 

We extend the results in the previous section to a general case (1.4). 
When d>/2 ,  (1.4) with some physically suitable conditions for Ixl ~ oo will 
not be well posed; Consider, for example, (1.4) with n = 1, d >/2, b(z) = -/az 
(/~ > 0). Then V(t, x) := (X(t, x) X(t, 0)) satisfies a linear parabolic equation 

c3 t V(t, x) -= -2#V(t, x) + 2D AV(t, x) + o2c$(x) (3.1) 

which involves infinity: V(t, 0) = oo. To avoid the difficulty we introduce a 
suitable boundary condition on a finite domain. Here we impose a periodic 
boundary condition: 

X(t, x) = X(t, x + 2L) 
(3.2) 

8xX(t,x)=c3xX(t,x + 2L ), VxCR  d 

with some constant vector L ~ R d. Approximate Gaussian field Y(t, x) with 
the boundary condition (3.2) is assumed to have a form 

c3tYi(t,x)= lai(t) + ~ flij(t)[Yi(t,x)-- mj(t)] I 
j = l  

+ DiAY~(t, x) + aif~(t, x) (3.3) 

822/37/5-6-11 ~ 
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with 

m,(t) = (Yi(t, x)) 

a(t) = (ai(t)) and f l(t)= (/3ij(t)) are determined by 

(3.4) 

minimizing the 

~i(t,x) := Yi(t, x ) -  mi(t ) (3.5) 

Define n • n matrices O and V by 

O(t) = ((bi(Y(t, x)) ~:(t, x))) (3.6) 

V(t, x) = ((~i(t, x) ~:(t, 0))) (3.7) 

Associate the symbol ~ when we multiply a matrix a -1 from the left; 
c7 = a -  la, etc., where a = diag(ai). After simple calculation I(t) is written as 

I(t) = I ~ t -  (bt,x)l 2 ~- tr[Zt ,o(  L - fit Zt,,ol)*(tGt - fit Vt,,~)l 

+ (16,,xl2) - I ( ~ , x ) l  = - tr[ v;0~ ~*~,] (3.8) 

Here l" [ denotes the Euclidean norm in R n, A* is a transpose of A and 
b(t,x) = (bi(Y(t,x))). Since It, o is symmetric and positive definite, the 
second term on the right-hand side of (3.8) is nonnegative; hence a and fl 
which minimize I(t) are given by 

a(t) = (b(Y(t, x))) (3.9) 

/6(t) = 0(r V(t,  O) 1 (3 .10)  

m(t) and V(t, x) follow matrix equations 

.~ ( t )  = a ( t )  

~, v(t ,  x) = I~(t) - D J }  v(t ,  x)  + v( t ,  x ) * { / ~ ( t ) *  - D ,~}  

+ o26(x) (3.11) 

Here D = diag(Di), and both J and zl operate on V(t, x). 
(3.11) with (3.9), (3.10) under a boundary condition V( t , x ) =  

V(t, x + 2L), c~ x V(t, x) = c~ x V(t, x + 2L) forms a closed set of equations in 
the EL. 

where 

Kullback-Leibler entropy, or equivalently by minimizing 

/(t) := ( a ~ 2 [ b i ( Y ( t , x ) ) -  a~( t ) -  ~ fl~:(t) ~j(t, x)] 2) 
i = 1  j = l  
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4. EL FOR GINZBURG-LANDAU EQUATION 

4,1, Basic Equations 

Let us consider a case b(z) =/az - vz 3 (v > 0) in (2.1): 

cgtX(t, x)  = gX(t ,  x)  - vX(t, x) 3 + D r x)  + af(t ,  x )  (4.1) 

For simplicity we make the following scale t ransformation:  

y = (/ao/V) '/2 Z 

/a =/a~ (4.2) 

t = {//ao 

x = (D//ao) 1/2 X 

where/a0 = (vzaa/D) 1/3. We then have an equation for )7(L s which makes  
the same form as (4.1) with/a =[ / ,  v = o = D = 1. In the above derivation we 
have used the fact that, for all positive constants '{1, 22, f ( 2 1 t , ' ~ 2 x ) ~  
(2122)-1/2f(t ,  x)  where ~ indicates the equality in the sense of distribution. 
Hereafter  we assume D = v = a = 1 unless otherwise stated. 

Functions a(t), fl(t) defined by (2.7), (2.8) are now given by 

a(t)  = ~am(t) -- 3m(t) V(t, 0 ) -  m(t) 3 (4.3) 

fl(t) =/a -- 3re(t) 2 -- 3 V(t, 0) (4.4) 

In deriving (4.3), (4.4) we have used the relations (~ ( t , x )2n+l )=O and 
(~(t, x) 4) = 3(~(t, x)2)2 = 3  V(t, 0) 2, which follow from the fact that ~(t, x) is 
a Gaussian with mean zero. 

Equations (2.9), (2.17) with (4.3), (4.4) are going to be analyzed. 

4.2. Stationary Solutions 

Stationary solutions (m, V(x))  satisfy 

/am - 3mV(0) - m 3 = 0 

2flV(x) + 2c92 V(x)  + 6(x) = 0 
where 

fl =/1 -- 3m 2 -- 3V(0) 

Equation (4.6) is solved as 

V(x) = 1(_f l ) - , /2  e x p [ _ ( , f l ) , / 2  ]x]] 

(4.5) 

(4.6) 

(4.7) 

(4.8) 
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fl needs to be negative to guarantee limlx I -,oo V(x) = 0. From (4.5) it follows 
that m = 0 or m 2 = #  - 3V(0). 

Suppose m -- 0. Then fl =/~ - 3V(0) < 0, i.e., V(0) >/.(3. From (4.7), 
(4.8) we have an algebraic equation for V(0): 

48V(0) 3 -  16/.tV(O) z -  1 = 0 

which has a unique solution in (p/3, oo), say, V A, for any realg. 
Suppose m 2 = g -  3V(0). Then f l = - 2 ( u -  3V(0)) < 0, 

V(0) </d/3. From (4.7), (4.8) we have 

96V(0) 3 -- 32,uV(O) 2 + 1 = 0 

(4.9) 

i.e., 0 < 

(4.10) 

which has no solution in (0,g/3) if r < g c -  3(9/2)1/3/4 = 1.238 .... and two 
solutions in (0,g/3), say, V B, V c (V B <~ Vc) i fg  >~gc. Using a pair of values 
(m, V(0)) to represent a stationary state itself, we have a unique stationary 
state A = (0, VA) if g <gc,  and five stationary states A, B~ = (+me, VB), 
C• = (•  c, Vc) if g>/~t~, where mi= ( , u -3V i )  1/2, ( i = B ,  C). As will be 
seen in the Appendix, the states A and B• are stable under small fluctuations 
while C• are unstable. 

The stationary distribution Pst of (4.1) is formally written in a path 
integral form (14) 

Pst(X(x) = Xo(x) ,x  E (--oo, oo ) ) 

ls  1 = Y exp - 2  dx[U(Xo(x)) + �89 a] (4.11) 
- - O O  

where 

U ( z ) = -  b(z)dz=--~luzl 2 + gz 1 4 (4.12) 

and JU is a normalization constant. Since the right-hand side of (4.11) is 
invariant under X 0 ~ - X 0 ,  stationary mean value of X is zero. 

In the EL scheme, on the other hand, two locally stable states B• 
appear in addition to the stable state A when g >~/~c. We recall that 
appearance of multiple steady states are also observed in the EL for 
stochastic ordinary differential equations. ~2) The states B• should be called 
quasistationary since they correspond to states fluctuating around i / t  1/2, the 
bottoms of the potential U (4.12); For /t sufficiently large, r / ( t ,x )=  
X(t, x) • gl/2 asymptotically satisfies 

c3dl(t, x) = --2~tr/(t, x) + c32 r/(t, x) + f ( t ,  x) (4.13) 
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Correlation function Vn(t, x) := (r/(t, x) r/(t, 0)) follows 

c~ t V,(t, x) = -4#  V,(t, x) + 2c~ V,(t, x) + 6(x) (4.14) 

which has a stationary solution 

V,(x) = ~(2#) -wz exp[--(2#) 1/2 [xl] (4.15) 

The stationary solution (pl/2, Vn(x)) [resp. (_#1/2, Vn(x)) ] asymptotically 
agrees with B+ (resp. B ) ;  as #-~ oo, (4.10) says VB ~ 1(2#) -w2, so that fl = 
- - 2 ( p -  3VB)in (4.8) ~--2#. 

Scalapinoetal. "~ carried out numerical calculation by using the 
functional integral representation (4.11). In Fig. 1, stationary value (X(0)2)st 
obtained by the EL is compared with the one by Scalapino et al. Note that, 
in the EL, 

f 
<X(O)2>st  -~ m 2 -Jr W(O) = I 

# -  2V n I 

in the state A 
(4.16) 

in the states B • 

Fig. 1. 

/ 
/ B+ 

-3 -2 -1 0 1 2 3 /L~ 

Stationary value of second moment (X(0)2>st as a function of# .  Solid curve: exact 
result by Scalapino et al. Dotted curve: EL (states A, B• 
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Our result agrees with theirs for /a < 1. After the appearance of multiple 
Steady states (,u >/lc) , the states B+ give almost correct value; for/~ large 
enough transition between two bottoms of the potential U seldom occurs, so 
that (X(0)2)st is obtained correctly if we consider U has only one well. 

Stationary correlation functions are approximately expressed as (14) 

I 1 "= (Y (x )  Y(0))st = (Y(0)2)st exp(-lx IlL 1) (4.17) 

12 : =  ( X ( x )  2 X(O)2)s t  - -  (X(x)2)st(X(O)2)s t 

= { (X(0 )4 ) s t  - -  (X(0 )2 )~ t  } exp(-lxl/n2) (4 .18 )  

by using two correlation lengths L 1, L 2. In the EL, 

11 = m 2 + V(x) (4.19) 

I z = 4m2V(x)  + (~(x) 2 {(0) 2) -- (~(x)2)(~(0) 2) 

= 4mZV(x)  + V(O) z + 2V(x) 2 -- V(0) 2 

= 4mZV(x) + 2V(x) 2 (4.20) 

where V(x) is given by (4.8). Hence we obtain 

[ ~ o - 3 V A ) I / z  for the stateA (4.21) 
L ( 1 = for the states B + 

and 

= [ 2 ~  - 3Vx) 1/2 for the stateA (4.22) 
L21 [not the form (4.18) for the states B • 

Comparison between the result by the EL and the one by Scalapino et al. is 
given in Fig. 2. Agreement is good for both L1 and L 2 if/~ ~< 1. For/~ > ~c 
the correlation length L1 in the state B+ is almost correct, but the EL fails to 
give c o r r e c t  L 2 which strongly reflects the non-Gaussian feature. 

4.3 .  Time Evolution 

First we make a remark on the time evolution of  the structure function 

defined by 

q~(t, k) : = f  dx eikXV(t, x)  (4.23) 

By (2.16) we have 

I 
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Fig. 2. 
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Correlation length L 1 and L 2 as a function of #. Solid curve: exact result by 
Scalapino et al. Dotted curve: EL (state A). 

where H(t) is given by (2.12). We remove the effect of  initial dis tr ibut ion,  
i.e., q~(0, k ) ~ 0 .  Then (4.24) means that  ~(t ,k)  is a monotonica l ly  
decreasing function of  k, having a peak at k = 0. Half-width at half- 
max imum decays  as t-1/2 for small  t since 

q~(t, at/Zt -~/2) ~(t, 0) -1 

=e-a fo  dsea,g(ts)-2 t-J dsg(s ) -2  ~ i as t-~ 0 

where a is a posit ive root  of  an equation 1 - e x p ( - a ) =  �89 This fact has 
been pointed out by Tomi ta  and Murakami ,  (8'9) who adopted an approx-  
imat ion different from the EL. 
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Let us next see how the diffusion term ~2X in (4.1) effects on the time 
evolution. Consider a set of equations in the EL {2-4) 

the(t) = Cu - 3 V~(t)) m~(t) - ms(t) 3 
(4.25) 

/2(t) = 2{it -- 3m~(t) 2 - 3V~(t)} V~(t) + 1 

for a stochastic differential equation 

~tX( t )  = /JX( t )  - X(t) 3 + f ( t )  (4.26) 

Here m, and V s represent approximate mean and variance in the EL, a n d f i s  
the Gaussian white noise. 

Equations (2.9) and (2.17) with (4.3), (4.4), and (4.25) are numerically 
integrated when the system is initially set in a neighborhood of unstable 
point x = 0 of a dynamical system 

2 ( 0  = #x ( t )  - x(t) 3 (4.27) 

i.e., initial conditions are V(0, x ) = 0 ,  m(0)~-0 for the model (4.1) and 
V~(0)--0, ms(O ) ~-0  for the model (4.26). Results given in Figs. 3 and 4 
show that the diffusion term c32X accelerates relaxation considerably when 
m(0) and m~(0) are small. 

10 

o t o.i 
Fig. 3. Time development of mean and variance in the EL (,u = 10). Solid curve: model 
(4.1). Dotted curve: model (4.25). Initial conditions are: m ( 0 ) = 0 . 1 ,  V(0, x ) = 0  and 

m~(O) = O. 1, Vs(O ) = O. 
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Same as in Fig. 4 but m(0)= 0.01, V(0, x)-= 0 and ms(O ) = 0.01, V,(0)= 0. Fig. 4. 

5. D I S C U S S I O N  

The field X following (1.4) will not have a property of spatial 
uniformity in the sense of ensemble average if it initially lacks. X may lose 
the property as time elapses even if it initially has. A better approximate 
Gaussian field l ~ which describes spatial nonuniformity of X is sought as 
follows. For simplicity we consider n = d =  1. We suppose ? follows an 
SPDE 

a t Y(l ,  x )  = Z(t, x) + D 8 217(4 x) + af(t, x) 

instead of (2.3). Here 

Z(t, x) = a(t, x) + fl(t, x)[ Y(t, x) -- m(t, x)] 

+ 7(4 x) Ox[Y(t, x) - m(t, x)] 

Functions a(t, x), fl(t, x), 7(t, x), m(t, x) will be determined by minimizing 

lim ([b(Y(t, x)) - Z(t, x)] 2) dx 
L-'*oo -2-Z~-L 

Further analysis of such a complicated procedure is left to future works. 
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As seen from (4.11), the Ginzburg-Landau model has a stationary 
solution with the property of spatial uniformity in the sense of ensemble 
average. It remains unknown, however, that the model keeps the property as 
time evolves which the analysis of Section 4.3 implicitly assumed. 

6. APPENDIX: STABILITY OF STATIONARY SOLUTIONS 

By (M, V(x)) we denote one of the stationary states A, B• or C+, i.e., 
it satisfies (4.5), (4.6) with m 2 =M.  Linearizing evolution equations (2.9) 
and (2.17) with (4.3) and (4.4) around (M, V(x)), we have 

tilfI(t) = (2# - 6V(0) - 4M) tiM(t) - 6M tiV(t, 0) (6.1) 

3~ tiV(t, x) = - 6V(x){tiM(t) + tiV(t, 0)} + 2(fl + c~) tiV(t, x) (6.2) 

where fl is given by (4.7). Let ti.A7/, tip denote the Laplace transforms of tiM, 
tiV; till~r(~) := f ~  e -at tiM(t) dt, ti12(2, x) := f~  e -at tiV(t, x) dt. Let tiq~, ti~ 
be the Fourier transforms of tiV, tiP; tiq~(t, k) := f ~  e ikx tiV(t, x) dx, 
tiqS(,~, k) := f ~-oo eikX tifz()~, x) dx. 

Laplace transformation of (6.1) in t yields 

with 

all ti/'l~(~) + aa2 tiV()~, 0) = -tiM(0) (6.3) 

Making the Laplace transformation in t and Fourier transformation in x, we 
have from (6.2) 

where 

ti~(2, k) = -6{6/17/(.,,1,) + til2(,,l, 0)} G(~, k) G(0, k) 

+ tiq~(0, k) G(2, k) (6.5) 

G0~, k) := (2k 2 - 2fl + ,~) 1 (6.6) 

In deriving (6.5) we have used a relation f eikXV(x)dx= G(O, k), which 
follows from (4.8). 

Put ~ ( 2 )  --- (2 - 2fl) 1/2 with Re._Zs > 0. Then tip is calculated from 
(6.5) as 

tilP'(Z, x) = 3.2-1/2/t, -- 1 {K(,~, x)  -- K(0 ,  x)  } {ti/'~-~r(,~,) Ai- ti~-~)(,,~,, O)} 

+ tiZ(2, x) (6.7) 

all = 2g - 6V(O) - 4M - 2 
(6.4) 

a12 = - 6 M  
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where 

K(2, x) = e x p [ - 2 -  ~/2._.~(2) Ix I ] /~ (~)  (6.8) 

and 6~ is the inverse Fourier transformation of the second term on the right- 
hand side of (6.5). In particular putting x = 0, we have 

azl c$/l~()~) + a22 617"(2, 0) = 6~(2, 0) (6.9) 

where 

a21 = 3 "  2 - 1 / 2 ~ / ' 0 ] , ) - 1 J ~ ( 0 )  1 {~g/-'(~) .~_f(0)}--I 
(6.10) 

a22 = 1 + a21 

Let A = (aij) be a 2 • 2 matrix defined by (6.4) and (6.10). 629/(2), gP(2, 0) 
are solved by (6.3) and (6.9), and 617"(2, x) is given by (6.7). 

Note that detA = 0 is a quartic equation of JU(2). Let zj ( j =  1 ..... 4) 
its solutions. Put z s =  (--2fl) m,  z(s)=si(s;real). 6V(2, x) and ~M(t) 
are given by a linear combination of the inverse Laplace transforma- 
tion of g i ( 2 ) = ( ~ S ( , ~ ) - - 7 ,  i) - 1  ( i = 1  ..... 5), g, (2)=(~(2) - -z (s ) )  -1, 
giO c) exp[--21/2Sr(2)Ix]] and gs(2) exp[-Zl /Z~(2)Ix l ] .  

c+i  ~ Let us calculate, for example, fc_i~g~(2)eatd2 ( j =  l,..., 4). We 
consider an integration along a closed curve C on a 2 plane with -Tr < 
arg(2 - 2/~) ~< zc shown in Fig. 5. 

By residue theorem, we have 

~cgt()Oeatd)~=[40 ~riziexp[(2fl+z~)t] if Re(zi)> 0 otherwise (6.11) 

Contributions from C1, C2, C6, C 7 tend to zero as R-~ ~ .  Total 
contribution from C 3, C 4, C 5 amounts at most O(t-leR~t), which tends to 
zero as t--, oo since fl < 0, so that terms effecting on the stability come from 
(6.11). Similar estimations are obtained from the inverse Laplace transfor- 
mation of other functions. Stability criterion for 6M, ~V now becomes 

unstable if Re(zi) > 0 and Re(2fl + z~) > 0 

stable 

for some i = l  ..... 4 

otherwise 
(6.12) 

Put w = w(2) = (--2fl) 1/2~.U~(2). 

State A [ M =  0, f l=/~--311(0) where V(0) is given by (4.9)]. Charac- 
teristic equation detA = 0 reads 

(2 -- 2fl)(w 2 + w + q) = 0 (6.i3) 
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Fig. 5. Contour C in 2 plane. 

where q = 3 �9 4 - 1 ( - f l )  -3/2. By (6.12) we conclude A is stable. 

States B~ C~ [M = #  - 3 V ( 0 ) , / / = #  - 3 M -  3V(0) where V(0) is given 
by (4.10)]. Characteristic equation is given by 

h(w) :=  (2w z - 1)(w z + w + q) - 3q = 0 (6.14) 

where q = 3 �9 4 - 1 ( - f l )  - 3 / 2 .  Note V B < 2#c/9 < Vc, so that q < 1 for the 
states B•  and q >/1 for the C•  Since h(1) = 2 - 2q ~< 0 for q >/1, h(w) = 0 
has a real solution in [1, m ) ;  hence the states C• are unstable. 

When 0 < q < 1, we have h(1) > O, h(w)T for w > 1, so that h ( w ) =  0 
has no solution for w ~> 1. Suppose w is complex: w = a + bi (a > O, b 4= 0). 
From (6.14) we get 

R e ( w 2 ) = a 2 - - b Z = { - - 4 a Z - - ( 4 q - - 2 ) a +  l } / ( 8 a +  2) (6.15) 

It is easy to see that inequality a 2 - -  b ~ > 1 is not satisfied for 0 < q < 1, so 
that B + are stable. 
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